一輪復習:數列求和——裂項相消法
【學習目標】
1. 掌握裂項相消法的裂法;
2. 會利用裂項相消法對數列進行求和。
3. 通過裂項相消法的學習,體會轉化與化歸的數學思想在數列中的應用。
【重點、難點】
重點:利用裂項相消法解決數列的求和問題。
難點:如何裂項及裂項相消法的使用。
【知識梳理】
常見的裂項公式:
(1) ; 相關變式:= ;
(2) ; 相關變式:= ;
(3) ; 相關變式:= ;
(4) ;
【典型例題】
題型一:
例1 (蘇州二模) 已知等差數列的前n項和為Sn,,,設數列的前n項和為,求 .
例2 (2018 豫西南部分示范性高中聯考) 已知等差數列中,,其前5項和為.
(1) 求數列的通項公式;
(2) 令,,設數列的前n項和為,求.
題型二:
例3 (2018 四川成都七中期中) 已知數列{}滿足,,其中Sn為數列{an}的前n項和, .
(1)求an;
(2)若數列滿足,的前n項和為,證明:.
學習小結:
1. 裂項應該注意什么?
2. 裂項相消法的一般步驟?
3. 裂項相消法的注意事項有哪些?
【課后檢測】
1. 數列{an}的前n項和為Sn,若則S5等于 .
2. 已知數列{}的通項公式是項和為 .
3. 數列1,1+2(1),1+2+3(1),…,1+2+…+n(1)的前n項和為( )
A、 n+1(3n-1) B、 n+1(2n) C、 n+1(3n) D、 n+1(4n)
4. (2010 山東) 已知等差數列滿足:,,其前n項和為Sn .
(1) 求及;
(2) 令,求數列的前n項和.