1、蝴蝶效應 氣象學家lorenz提出一篇論文,名叫「一只蝴蝶拍一下翅膀會不會在taxas州引起龍卷風?」論述某系統如果初期條件差一點點,結果會很不穩定,他把這種現象戲稱做「蝴蝶效應」。就像我們投擲骰子兩次,無論我們如何刻意去投擲,兩次的物理現象和投出的點數也不一定是相同的。lorenz為何要寫這篇論文呢? 這故事發生在1961年的某個冬天,他如往常一般在辦公室操作氣象電腦。平時,他只需要將溫度、濕度、壓力等氣象數據輸入,電腦就會依據三個內建的微分方程式,計算出下一刻可能的氣象數據,因此模擬出氣象變化圖。 這一天,lorenz想更進一步了解某段紀錄的後續變化,他把某時刻的氣象數據重新輸入電腦,讓電腦計算出更多的後續結果。當時,電腦處理數據資料的數度不快,在結果出來之前,足夠他喝杯咖啡并和友人閑聊一陣。在一小時後,結果出來了,不過令他目瞪口呆。結果和原資訊兩相比較,初期數據還差不多,越到後期,數據差異就越大了,就像是不同的兩筆資訊。而問題并不出在電腦,問題是他輸入的數據差了0.000127,而這些微的差異卻造成天壤之別。所以長期的準確預測天氣是不可能的。
2、動物中的數學“天才” 蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成。組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料。蜂房的巢壁厚0.073毫米,誤差極小。 丹頂鶴總是成群結隊遷飛,而且排成“人”字形。“人”字形的角度是110度。更精確地計算還表明“人”字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的“默契”? 蜘蛛結的“八卦”形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規也很難畫出像蜘蛛網那樣勻稱的圖案。 冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。 真正的數學“天才”是珊瑚蟲。珊瑚蟲在自己的身上記下“日歷”,它們每年在自己的體壁上“刻畫”出365條斑紋,顯然是一天“畫”一條。奇怪的是,古生物學家發現3億5千萬年前的珊瑚蟲每年“畫”出400幅“水彩畫”。天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天。
3、麥比烏斯帶 每一張紙均有兩個面和封閉曲線狀的棱(edge),如果有一張紙它有一條棱而且只有一個面,使得一只螞蟻能夠不越過棱就可從紙上的任何一點到達其他任何一點,這有可能嗎?事實上是可能的只要把一條紙帶半扭轉,再把兩頭貼上就行了。這是德國數學家麥比烏斯(m?bius.a.f 1790-1868)在1858年發現的,自此以後那種帶就以他的名字命名,稱為麥比烏斯帶。有了這種玩具使得一支數學的分支拓樸學得以蓬勃發展。
4、數學家的遺囑 阿拉伯數學家花拉子密的遺囑,當時他的妻子正懷著他們的第一胎小孩。“如果我親愛的妻子幫我生個兒子,我的兒子將繼承三分之二的遺產,我的妻子將得三分之一;如果是生女的,我的妻子將繼承三分之二 的遺產,我的女兒將得三分之一。”。 而不幸的是,在孩子出生前,這位數學家就去世了。之后,發生的事更困擾大家,他的妻子幫他生了一對龍鳳胎,而問題就發生在他的遺囑內容。 如何遵照數學家的遺囑,將遺產分給他的妻子、兒子、女兒呢?
5、火柴游戲 一個最普通的火柴游戲就是兩人一起玩,先置若干支火柴於桌上,兩人輪流取,每次所取的數目可先作一些限制,規定取走最後一根火柴者獲勝。 規則一:若限制每次所取的火柴數目最少一根,最多三根,則如何玩才可致勝? 例如:桌面上有n=15根火柴,甲﹑乙兩人輪流取,甲先取,則甲應如何取才能致勝? 為了要取得最後一根,甲必須最後留下零根火柴給乙,故在最後一步之前的輪取中,甲不能留下1根或2根或3根,否則乙就可以全部取走而獲勝。如果留下4根,則乙不能全取,則不管乙取幾根(1或2或3),甲必能取得所有剩下的火柴而贏了游戲。同理,若桌上留有8根火柴讓乙去取,則無論乙如何取,甲都可使這一次輪取後留下4根火柴,最後也一定是甲獲勝。由上之分析可知,甲只要使得桌面上的火柴數為4﹑8﹑12﹑16...等讓乙去取,則甲必穩操勝券。因此若原先桌面上的火柴數為15,則甲應取3根。(∵15-3=12)若原先桌面上的火柴數為18呢?則甲應先取2根(∵18-2=16)。 規則二:限制每次所取的火柴數目為1至4根,則又如何致勝? 原則:若甲先取,則甲每次取時,須留5的倍數的火柴給乙去取。 通則:有n支火柴,每次可取1至k支,則甲每次取後所留的火柴數目必須為k+1之倍數。 規則三:限制每次所取的火柴數目不是連續的數,而是一些不連續的數,如1﹑3﹑7,則又該如何玩法? 分析:1﹑3﹑7均為奇數,由於目標為0,而0為偶數,所以先取者甲,須使桌上的火柴數為偶數,因為乙在偶數的火柴數中,不可能再取去1﹑3﹑7根火柴後獲得0,但假使如此也不能保證甲必贏,因為甲對於火柴數的奇或偶,也是無法依照己意來控制的。因為〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴數奇偶相反。若開始時是奇數,如17,甲先取,則不論甲取多少(1或3或7),剩下的便是偶數,乙隨後又把偶數變成奇數,甲又把奇數回覆到偶數,最後甲是注定為贏家;反之,若開始時為偶數,則甲注定會輸。 通則:開局是奇數,先取者必勝;反之,若開局為偶數,則先取者會輸。 規則四:限制每次所取的火柴數是1或4(一個奇數,一個偶數)。 分析:如前規則二,若甲先取,則甲每次取時留5的倍數的火柴給乙去取,則甲必勝。此外,若甲留給乙取的火柴數為5之倍數加2時,甲也可贏得游戲,因為玩的時候可以控制每輪所取的火柴數為5(若乙取1,甲則取4;若乙取4,則甲取1),最後剩下2根,那時乙只能取1,甲便可取得最後一根而獲勝。 通則:若甲先取,則甲每次取時所留火柴數為5之倍數或5的倍數加2。
6、韓信點兵 韓信點兵又稱為中國剩余定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。劉邦茫然而不知其數。 我們先考慮下列的問題:假設兵不滿一萬,每5人一列、9人一列、13人一列、17人一列都剩3人,則兵有多少? 首先我們先求5、9、13、17之最小公倍數9945(注:因為5、9、13、17為兩兩互質的整數,故其最小公倍數為這些數的積),然後再加3,得9948(人)。 中國有一本數學古書「孫子算經」也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問物幾何?」 答曰:「二十三」 術曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩二,置三十,并之,得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十,五五數之剩一,則置二十一,七七數之剩一,則置十五,即得。」 孫子算經的作者及確實著作年代均不可考,不過根據考證,著作年代不會在晉朝之後,以這個考證來說上面這種問題的解法,中國人發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩余定理。中國剩余定理(chinese remainder theorem)在近代抽象代數學中占有一席非常重要的地位。